Data Skeptic

TMs are a model of computation at the heart of algorithmic analysis.  A Turing Machine has two components.  An infinitely long piece of tape (memory) with re-writable squares and a read/write head which is programmed to change it's state as it processes the input.  This exceptionally simple mechanical computer can compute anything that is intuitively computable, thus says the Church-Turing Thesis.

Attempts to make a "better" Turing Machine by adding things like additional tapes can make the programs easier to describe, but it can't make the "better" machine more capable.  It won't be able to solve any problems the basic Turing Machine can, even if it perhaps solves them faster.

An important concept we didn't get to in this episode is that of a Universal Turing Machine.  Without the prefix, a TM is a particular algorithm.  A Universal TM is a machine that takes, as input, a description of a TM and an input to that machine, and subsequently, simulates the inputted machine running on the given input.

Turing Machines are a central idea in computer science.  They are central to algorithmic analysis and the theory of computation.

Direct download: turing-machines.mp3
Category:general -- posted at: 8:00am PDT

Over the past several years, we have seen many success stories in machine learning brought about by deep learning techniques. While the practical success of deep learning has been phenomenal, the formal guarantees have been lacking. Our current theoretical understanding of the many techniques that are central to the current ongoing big-data revolution is far from being sufficient for rigorous analysis, at best. In this episode of Data Skeptic, our host Kyle Polich welcomes guest John Wilmes, a mathematics post-doctoral researcher at Georgia Tech, to discuss the efficiency of neural network learning through complexity theory.

Direct download: the-complexity-of-learning-neural-networks.mp3
Category:data science -- posted at: 8:00am PDT

How long an algorithm takes to run depends on many factors including implementation details and hardware.  However, the formal analysis of algorithms focuses on how they will perform in the worst case as the input size grows.  We refer to an algorithm's runtime as it's "O" which is a function of its input size "n".  For example, O(n) represents a linear algorithm - one that takes roughly twice as long to run if you double the input size.  In this episode, we discuss a few everyday examples of algorithmic analysis including sorting, search a shuffled deck of cards, and verifying if a grocery list was successfully completed.

Thanks to our sponsor Brilliant.org, who right now is featuring a related problem as their Brilliant Problem of the Week.

Direct download: big-oh-analysis.mp3
Category:general -- posted at: 8:00am PDT

In this episode, Microsoft's Corporate Vice President for Cloud Artificial Intelligence, Joseph Sirosh, joins host Kyle Polich to share some of the Microsoft's latest and most exciting innovations in AI development platforms. Last month, Microsoft launched a set of three powerful new capabilities in Azure Machine Learning for advanced developers to exploit big data, GPUs, data wrangling and container-based model deployment.

Extended show notes found here.

Thanks to our sponsor Springboard.  Check out Springboard's Data Science Career Track Bootcamp.

Direct download: data-science-tools-and-other-announcements-from-ignite.mp3
Category:data science -- posted at: 8:00am PDT

1