Data Skeptic (general)

Today's episode is a reading of Isaac Asimov's The Machine that Won the War. I can't think of a story that's more appropriate for Data Skeptic.

Direct download: 2015_Holiday_Special.mp3
Category:general -- posted at: 12:00am PST

In this interview with Aaron Halfaker of the Wikimedia Foundation, we discuss his research and career related to the study of Wikipedia. In his paper The Rise and Decline of an open Collaboration Community, he highlights a trend in the declining rate of active editors on Wikipedia which began in 2007. I asked Aaron about a variety of possible hypotheses for the phenomenon, in particular, how automated quality control tools that revert edits automatically could play a role. This lead Aaron and his collaborators to develop Snuggle, an optimized interface to help Wikipedians better welcome new comers to the community.

We discuss the details of these topics as well as ORES, which provides revision scoring as a service to any software developer that wants to consume the output of their machine learning based scoring.

You can find Aaron on Twitter as @halfak.

Direct download: wikipedia-revision-scoring-as-a-service.mp3
Category:general -- posted at: 6:30am PST

Today's topic is term frequency inverse document frequency, which is a statistic for estimating the importance of words and phrases in a set of documents.

Direct download: tf_-_idf.mp3
Category:general -- posted at: 8:45am PST

Early astronomers could see several of the planets with the naked eye. The invention of the telescope allowed for further understanding of our solar system. The work of Isaac Newton allowed later scientists to accurately predict Neptune, which was later observationally confirmed exactly where predicted. It seemed only natural that a similar unknown body might explain anomalies in the orbit of Mercury, and thus began the search for the hypothesized planet Vulcan.

Thomas Levenson's book "The Hunt for Vulcan" is a narrative of the key scientific minds involved in the search and eventual refutation of an unobserved planet between Mercury and the sun. Thomas joins me in this episode to discuss his book and the fascinating story of the quest to find this planet.

During the discussion, we mention one of the contributions made by Urbain-Jean-Joseph Le Verrier which involved some complex calculations which enabled him to predict where to find the planet that would eventually be called Neptune. The calculus behind this work is difficult, and some of that work is demonstrated in a Jupyter notebook I recently discovered from Paulo Marques titled The-Body Problem.

Thomas Levenson is a professor at MIT and head of its science writing program. He is the author of several books, including Einstein in Berlin and Newton and the Counterfeiter: The Unknown Detective Career of the World’s Greatest Scientist. He has also made ten feature-length documentaries (including a two-hour Nova program on Einstein) for which he has won numerous awards. In his most recent book "The Hunt for Vulcan", explores the century spanning quest to explain the movement of the cosmos via theory and the role the hypothesized planet Vulcan played in the story.

Follow Thomas on twitter @tomlevenson and check out his blog at

Pick up your copy of The Hunt for Vulcan at your local bookstore, preferred book buying place, or at the Penguin Random House site.

Direct download: the-hunt-for-vulcan.mp3
Category:general -- posted at: 12:00am PST

Today's episode discusses the accuracy paradox. There are cases when one might prefer a less accurate model because it yields more predictive power or better captures the underlying causal factors describing the outcome variable you are interested in. This is especially relevant in machine learning when trying to predict rare events. We discuss how the accuracy paradox might apply if you were trying to predict the likelihood a person was a bird owner.

Direct download: the-accuracy-paradox.mp3
Category:general -- posted at: 12:00am PST

... or should this have been called data science from a neuroscientist's perspective? Either way, I'm sure you'll enjoy this discussion with Laurie Skelly. Laurie earned a PhD in Integrative Neuroscience from the Department of Psychology at the University of Chicago. In her life as a social neuroscientist, using fMRI to study the neural processes behind empathy and psychopathy, she learned the ropes of zooming in and out between the macroscopic and the microscopic -- how millions of data points come together to tell us something meaningful about human nature. She's currently at Metis Data Science, an organization that helps people learn the skills of data science to transition in industry.

In this episode, we discuss fMRI technology, Laurie's research studying empathy and psychopathy, as well as the skills and tools used in common between neuroscientists and data scientists. For listeners interested in more on this subject, Laurie recommended the blogs Neuroskeptic, Neurocritic, and Neuroecology.

We conclude the episode with a mention of the upcoming Metis Data Science San Francisco cohort which Laurie will be teaching. If anyone is interested in applying to participate, they can do so here.

Direct download: neuroscience.mp3
Category:general -- posted at: 12:00am PST

A discussion of the expected number of cars at a stoplight frames today's discussion of the bias variance tradeoff. The central ideal of this concept relates to model complexity. A very simple model will likely generalize well from training to testing data, but will have a very high variance since it's simplicity can prevent it from capturing the relationship between the covariates and the output. As a model grows more and more complex, it may capture more of the underlying data but the risk that it overfits the training data and therefore does not generalize (is biased) increases. The tradeoff between minimizing variance and minimizing bias is an ongoing challenge for data scientists, and an important discussion for skeptics around how much we should trust models.

Direct download: bias-variance-tradeoff.mp3
Category:general -- posted at: 12:00am PST

The recent opinion piece Big Data Doesn't Exist on Tech Crunch by Slater Victoroff is an interesting discussion about the usefulness of data both big and small. Slater joins me this episode to discuss and expand on this discussion.

Slater Victoroff is CEO of indico Data Solutions, a company whose services turn raw text and image data into human insight. He, and his co-founders, studied at Olin College of Engineering where indico was born. indico was then accepted into the "Techstars Accelarator Program" in the Fall of 2014 and went on to raise $3M in seed funding. His recent essay "Big Data Doesn't Exist" received a lot of traction on TechCrunch, and I have invited Slater to join me today to discuss his perspective and touch on a few topics in the machine learning space as well.

Direct download: big-data-doesnt-exist.mp3
Category:general -- posted at: 12:00am PST

The degree to which two variables change together can be calculated in the form of their covariance. This value can be normalized to the correlation coefficient, which has the advantage of transforming it to a unitless measure strictly bounded between -1 and 1. This episode discusses how we arrive at these values and why they are important.

Direct download: covariance_and_correlation.mp3
Category:general -- posted at: 12:00am PST

Today's guest is Cameron Davidson-Pilon. Cameron has a masters degree in quantitative finance from the University of Waterloo. Think of it as statistics on stock markets. For the last two years he's been the team lead of data science at Shopify. He's the founder of which produces screencasts teaching methods and techniques of applied data science. He's also the author of the just released in print book Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference, which you can also get in a digital form.

This episode focuses on the topic of Bayesian A/B Testing which spans just one chapter of the book. Related to today's discussion is the Data Origami post The class imbalance problem in A/B testing.

Lastly, Data Skeptic will be giving away a copy of the print version of the book to one lucky listener who has a US based delivery address. To participate, you'll need to write a review of any site, book, course, or podcast of your choice on After it goes live, tweet a link to it with the hashtag #WinDSBook to be given an entry in the contest. This contest will end November 20th, 2015, at which time I'll draw a single randomized winner and contact them for delivery details via direct message on Twitter.

Direct download: bayesian-methods-for-hackers.mp3
Category:general -- posted at: 12:00am PST