Data Skeptic (general)

In this episode, Kyle and Linhda discuss the theory of formal languages. Any language can (theoretically) be a formal language. The requirement is that the language can be rigorously described as a set of strings which are considered part of the language. Those strings are any combination of alphabet characters in the given language.

Read more

 

Direct download: the-theory-of-formal-languages.mp3
Category:general -- posted at: 8:00am PDT

The Loebner Prize is a competition in the spirit of the Turing Test.  Participants are welcome to submit conversational agent software to be judged by a panel of humans.  This episode includes interviews with Charlie Maloney, a judge in the Loebner Prize, and Bruce Wilcox, a winner of the Loebner Prize.

Direct download: the-loebner-prize.mp3
Category:general -- posted at: 8:00am PDT

In this episode, Kyle chats with Vince from iv.ai and Heather Shapiro who works on the Microsoft Bot Framework. We solicit their advice on building a good chatbot both creatively and technically.

Our sponsor today is Warby Parker.

Direct download: chatbots.mp3
Category:general -- posted at: 8:00am PDT

In this week’s episode, Kyle Polich interviews Pedro Domingos about his book, The Master Algorithm: How the quest for the ultimate learning machine will remake our world. In the book, Domingos describes what machine learning is doing for humanity, how it works and what it could do in the future. He also hints at the possibility of an ultimate learning algorithm, in which the machine uses it will be able to derive all knowledge — past, present, and future.

Direct download: the-master-algorithm.mp3
Category:general -- posted at: 8:00am PDT

What's the best machine learning algorithm to use? I hear that XGBoost wins most of the Kaggle competitions that aren't won with deep learning. Should I just use XGBoost all the time? That might work out most of the time in practice, but a proof exists which tells us that there cannot be one true algorithm to rule them.

Direct download: no-free-lunch-theorems.mp3
Category:general -- posted at: 8:00am PDT

For a long time, physicians have recognized that the tools they have aren't powerful enough to treat complex diseases, like cancer. In addition to data science and models, clinicians also needed actual products — tools that physicians and researchers can draw upon to answer questions they regularly confront, such as “what clinical trials are available for this patient that I'm seeing right now?” In this episode, our host Kyle interviews guests Alex Grigorenko and Iker Huerga from Memorial Sloan Kettering Cancer Center to talk about how data and technology can be used to prevent, control and ultimately cure cancer.

Direct download: ml-at-sloan-kettering-cancer-center.mp3
Category:general -- posted at: 8:00am PDT

In a previous episode, we discussed Markov Decision Processes or MDPs, a framework for decision making and planning. This episode explores the generalization Partially Observable MDPs (POMDPs) which are an incredibly general framework that describes most every agent based system.

Direct download: optimal-decision-making-with-pomdps.mp3
Category:general -- posted at: 8:00am PDT

In many real world situations, a person/agent doesn't necessarily know their own objectives or the mechanics of the world they're interacting with. However, if the agent receives rewards which are correlated with the both their actions and the state of the world, then reinforcement learning can be used to discover behaviors that maximize the reward earned.

Direct download: reinforcement-learning.mp3
Category:general -- posted at: 8:00am PDT

Formally, an MDP is defined as the tuple containing states, actions, the transition function, and the reward function. This podcast examines each of these and presents them in the context of simple examples.  Despite MDPs suffering from the curse of dimensionality, they're a useful formalism and a basic concept we will expand on in future episodes.

Direct download: markov-decision-process.mp3
Category:general -- posted at: 8:00am PDT

Last week on Data Skeptic, we visited the Laboratory of Neuroimaging, or LONI, at USC and learned about their data-driven platform that enables scientists from all over the world to share, transform, store, manage and analyze their data to understand neurological diseases better. We talked about how neuroscientists measure the brain using data from MRI scans, and how that data is processed and analyzed to understand the brain. This week, we'll continue the second half of our two-part episode on LONI.

Direct download: neuroscience-frontiers.mp3
Category:general -- posted at: 8:00am PDT