Data Skeptic

In this episode, Professor Michael Kearns from the University of Pennsylvania joins host Kyle Polich to talk about the computational complexity of machine learning, complexity in game theory, and algorithmic fairness. Michael's doctoral thesis gave an early broad overview of computational learning theory, in which he emphasizes the mathematical study of efficient learning algorithms by machines or computational systems.

When we look at machine learning algorithms they are almost like meta-algorithms in some sense. For example, given a machine learning algorithm, it will look at some data and build some model, and it’s going to behave presumably very differently under different inputs. But does that mean we need new analytical tools? Or is a machine learning algorithm just the same thing as any deterministic algorithm, but just a little bit more tricky to figure out anything complexity-wise? In other words, is there some overlap between the good old-fashioned analysis of algorithms with the analysis of machine learning algorithms from a complexity viewpoint? And what is the difference between strategies for determining the complexity bounds on samples versus algorithms?

A big area of machine learning (and in the analysis of learning algorithms in general) Michael and Kyle discuss is the topic known as complexity regularization. Complexity regularization asks: How should one measure the goodness of fit and the complexity of a given model? And how should one balance those two, and how can one execute that in a scalable, efficient way algorithmically? From this, Michael and Kyle discuss the broader picture of why one should care whether a learning algorithm is efficiently learnable if it's learnable in polynomial time.

Another interesting topic of discussion is the difference between sample complexity and computational complexity. An active area of research is how one should regularize their models so that they're balancing the complexity with the goodness of fit to fit their large training sample size.

As mentioned, a good resource for getting started with correlated equilibria is: https://www.cs.cornell.edu/courses/cs684/2004sp/feb20.pdf

Thanks to our sponsors:

Mendoza College of Business - Get your Masters of Science in Business Analytics from Notre Dame.

brilliant.org - A fun, affordable, online learning tool.  Check out their Computer Science Algorithms course.

Direct download: the-computational-complexity-of-machine-learning.mp3
Category:general -- posted at: 8:00am PDT

TMs are a model of computation at the heart of algorithmic analysis.  A Turing Machine has two components.  An infinitely long piece of tape (memory) with re-writable squares and a read/write head which is programmed to change it's state as it processes the input.  This exceptionally simple mechanical computer can compute anything that is intuitively computable, thus says the Church-Turing Thesis.

Attempts to make a "better" Turing Machine by adding things like additional tapes can make the programs easier to describe, but it can't make the "better" machine more capable.  It won't be able to solve any problems the basic Turing Machine can, even if it perhaps solves them faster.

An important concept we didn't get to in this episode is that of a Universal Turing Machine.  Without the prefix, a TM is a particular algorithm.  A Universal TM is a machine that takes, as input, a description of a TM and an input to that machine, and subsequently, simulates the inputted machine running on the given input.

Turing Machines are a central idea in computer science.  They are central to algorithmic analysis and the theory of computation.

Direct download: turing-machines.mp3
Category:general -- posted at: 8:00am PDT

Over the past several years, we have seen many success stories in machine learning brought about by deep learning techniques. While the practical success of deep learning has been phenomenal, the formal guarantees have been lacking. Our current theoretical understanding of the many techniques that are central to the current ongoing big-data revolution is far from being sufficient for rigorous analysis, at best. In this episode of Data Skeptic, our host Kyle Polich welcomes guest John Wilmes, a mathematics post-doctoral researcher at Georgia Tech, to discuss the efficiency of neural network learning through complexity theory.

Direct download: the-complexity-of-learning-neural-networks.mp3
Category:data science -- posted at: 8:00am PDT

How long an algorithm takes to run depends on many factors including implementation details and hardware.  However, the formal analysis of algorithms focuses on how they will perform in the worst case as the input size grows.  We refer to an algorithm's runtime as it's "O" which is a function of its input size "n".  For example, O(n) represents a linear algorithm - one that takes roughly twice as long to run if you double the input size.  In this episode, we discuss a few everyday examples of algorithmic analysis including sorting, search a shuffled deck of cards, and verifying if a grocery list was successfully completed.

Thanks to our sponsor Brilliant.org, who right now is featuring a related problem as their Brilliant Problem of the Week.

Direct download: big-oh-analysis.mp3
Category:general -- posted at: 8:00am PDT

In this episode, Microsoft's Corporate Vice President for Cloud Artificial Intelligence, Joseph Sirosh, joins host Kyle Polich to share some of the Microsoft's latest and most exciting innovations in AI development platforms. Last month, Microsoft launched a set of three powerful new capabilities in Azure Machine Learning for advanced developers to exploit big data, GPUs, data wrangling and container-based model deployment.

Extended show notes found here.

Thanks to our sponsor Springboard.  Check out Springboard's Data Science Career Track Bootcamp.

Direct download: data-science-tools-and-other-announcements-from-ignite.mp3
Category:data science -- posted at: 8:00am PDT

Last year, the film development and production company End Cue produced a short film, called Sunspring, that was entirely written by an artificial intelligence using neural networks. More specifically, it was authored by a recurrent neural network (RNN) called long short-term memory (LSTM). According to End Cue’s Chief Technical Officer, Deb Ray, the company has come a long way in improving the generative AI aspect of the bot. In this episode, Deb Ray joins host Kyle Polich to discuss how generative AI models are being applied in creative processes, such as screenwriting. Their discussion also explores how data science for analyzing development projects, such as financing and selecting scripts, as well as optimizing the content production process.

Direct download: generative-ai-for-content-creation.mp3
Category:data science -- posted at: 8:00am PDT

One Shot Learning is the class of machine learning procedures that focuses learning something from a small number of examples.  This is in contrast to "traditional" machine learning which typically requires a very large training set to build a reasonable model.

In this episode, Kyle presents a coded message to Linhda who is able to recognize that many of these new symbols created are likely to be the same symbol, despite having extremely few examples of each.  Why can the human brain recognize a new symbol with relative ease while most machine learning algorithms require large training data?  We discuss some of the reasons why and approaches to One Shot Learning.

Direct download: one-shot-learning.mp3
Category:general -- posted at: 8:00am PDT

Recommender systems play an important role in providing personalized content to online users. Yet, typical data mining techniques are not well suited for the unique challenges that recommender systems face. In this episode, host Kyle Polich joins Dr. Joseph Konstan from the University of Minnesota at a live recording at FARCON 2017 in Minneapolis to discuss recommender systems and how machine learning can create better user experiences. 

Direct download: recommender-systems-live-from-farcon.mp3
Category:general -- posted at: 8:00am PDT

Thanks to our sponsor brilliant.org/dataskeptics

A Long Short Term Memory (LSTM) is a neural unit, often used in Recurrent Neural Network (RNN) which attempts to provide the network the capacity to store information for longer periods of time. An LSTM unit remembers values for either long or short time periods. The key to this ability is that it uses no activation function within its recurrent components. Thus, the stored value is not iteratively modified and the gradient does not tend to vanish when trained with backpropagation through time.

Direct download: long-short-term-memory.mp3
Category:general -- posted at: 8:00am PDT

Zillow is a leading real estate information and home-related marketplace. We interviewed Andrew Martin, a data science Research Manager at Zillow, to learn more about how Zillow uses data science and big data to make real estate predictions.

Direct download: zillow-zestimate.mp3
Category:general -- posted at: 8:00am PDT