Data Skeptic
Building a fair machine learning model has become a critical consideration in today’s world. In this episode, we speak with Anshuman Chabra, a Ph.D. candidate in Computer Networks. Chhabra joins us to discuss his research on building fair machine learning models and why it is important. Find out how he modeled the problem and the result found.

Click here to access additional show notes on our webiste!

Thanks to our sponsor!
https://astrato.io

Astrato is a modern BI and analytics platform built for the Snowflake Data Cloud. A next-generation live query data visualization and analytics solution, empowering everyone to make live data decisions.

Direct download: fair-hierarchical-clustering.mp3
Category:general -- posted at: 6:23am PDT

Many people know K-means clustering as a powerful clustering technique but not all listeners will be as familiar with spectral clustering. In today’s episode, Sibylle Hess from the Data Mining group at TU Eindhoven joins us to discuss her work around spectral clustering and how its result could potentially cause a massive shift from the conventional neural networks. Listen to learn about her findings.

Visit our website for additional show notes

Thanks to our sponsor, Weights & Biases

Direct download: matrix-factorization-for-k-means.mp3
Category:general -- posted at: 6:00am PDT

In this episode, we speak with Bernd Fritzke, a proficient financial expert and a Data Science researcher on his recent research - the breathing K-means algorithm. Bernd discussed the perks of the algorithms and what makes it stand out from other K-means variations. He extensively discussed the working principle of the algorithm and the subtle but impactful features that enables it produce top-notch results with low computational resources. Listen to learn about this algorithm.

Direct download: breathing-k-means.mp3
Category:general -- posted at: 6:00am PDT

In today’s episode, Jason, an Assistant Professor of Statistical Science at Duke University talks about his research on K power means. K power means is a newly-developed algorithm by Jason and his team, that aims to solve the problem of local minima in classical K-means, without demanding heavy computational resources. Listen to find out the outcome of Jason's study.

Click here to access additional show notes on our website!

Thanks to our Sponsors:
ClearML is an open-source MLOps solution users love to customize, helping you easily Track, Orchestrate, and Automate ML workflows at scale. https://clear.ml

Springboard
Springboard offers end-to-end online data career programs that encompass data science, data analytics, data engineering, and machine learning engineering.

Direct download: power-k-means.mp3
Category:general -- posted at: 6:00am PDT

In this episode, Kyle interviews Lucas Murtinho about the paper "Shallow decision treees for explainable k-means clustering" about the use of decision trees to help explain the clustering partitions. 

Thanks to our Sponsors:
ClearML is an open-source MLOps solution users love to customize, helping you easily Track, Orchestrate, and Automate ML workflows at scale.

Direct download: explainable-k-means.mp3
Category:general -- posted at: 6:17am PDT

1