Data Skeptic

In this episode, we are joined by Carlos Hernández Oliván, a Ph.D. student at the University of Zaragoza. Carlos’s interest focuses on building new models for symbolic music generation.

Carlos shared his thoughts on whether these models are genuinely creative. He revealed situations where AI-generated music can pass the Turing test. He also shared some essential considerations when constructing models for music composition.

Direct download: llms-in-music-composition.mp3
Category:general -- posted at: 6:45am PDT

Hongyi Wang, a Senior Researcher at the Machine Learning Department at Carnegie Mellon University, joins us. His research is in the intersection of systems and machine learning. He discussed his research paper, Cuttlefish: Low-Rank Model Training without All the Tuning, on today’s show.

Hogyi started by sharing his thoughts on whether developers need to learn how to fine-tune models. He then spoke about the need to optimize the training of ML models, especially as these models grow bigger. He discussed how data centers have the hardware to train these large models but not the community. He then spoke about the Low-Rank Adaptation (LoRa) technique and where it is used.

Hongyi discussed the Cuttlefish model and how it edges LoRa. He shared the use cases of Cattlefish and who should use it. Rounding up, he gave his advice on how people can get into the machine learning field. He also shared his future research ideas.

Direct download: cuddlefish-model-tuning.mp3
Category:general -- posted at: 7:38am PDT

On today’s episode, we have Daniel Rock, an Assistant Professor of Operations Information and Decisions at the Wharton School of the University of Pennsylvania. Daniel’s research focuses on the economics of AI and ML, specifically how digital technologies are changing the economy.

Daniel discussed how AI has disrupted the job market in the past years. He also explained that it had created more winners than losers.

Daniel spoke about the empirical study he and his coauthors did to quantify the threat LLMs pose to professionals. He shared how they used the O-NET dataset and the BLS occupational employment survey to measure the impact of LLMs on different professions. Using the radiology profession as an example, he listed tasks that LLMs could assume.

Daniel broadly highlighted professions that are most and least exposed to LLMs proliferation. He also spoke about the risks of LLMs and his thoughts on implementing policies for regulating LLMs.

Direct download: which-professions-are-threatened-by-llms.mp3
Category:general -- posted at: 5:00am PDT

We are excited to be joined by J.D. Zamfirescu-Pereira, a Ph.D. student at UC Berkeley. He focuses on the intersection of human-computer interaction (HCI) and artificial intelligence (AI). He joins us to share his work in his paper, Why Johnny can’t prompt: how non-AI experts try (and fail) to design LLM prompts.  The discussion also explores lessons learned and achievements related to BotDesigner, a tool for creating chat bots.

Direct download: why-prompting-is-hard.mp3
Category:general -- posted at: 10:13am PDT